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Polymerase Chain Reaction (PCR)

100

Materials:

- Sequence to be amplified
- DNA polymerase

- Buffer solution

- Primers

- dNTP

- Thermal cycler

- PCR Tubes

Denaturation (94 °C) Denaturation (94 °C)
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Elengation (72 °C)

Temp (¢C)
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Annealing {54 *C)

O Cycle
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Thermal Cycles: 40
Denaturation
- ™~94-98°C
- ~10s
- Annealing
- ~50-55°C depends on primer Tm)
- ~10s
- Elongation
- 72°C or optimal temperature for polymerase)
- 15-30s/kb
- Generally 25-35 cycles

Time




Agarose Gels



Agarose gel electrophoresis: casting and loading

Gel parameters:
- Number of wells = number of samples
Gel density =0.5-2%

- Lower gel density for high MW

- Higher gel density for lower MW
Length

- Shorter = lower resolution

- Longer = higher resolution
Running Buffer

- TAE (tris base, acetic acid, EDTA)

- TBE (tris base, boric acid, EDTA)
Loading Buffer

- Xylene cyanol / bromophenol blue




Agarose gel electrophoresis: running gels
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Running parameters:
- Voltage:

- ~100 Volts (10V/cm of gel length)

Time:

Until loading dye reaches bottom of gel



Agarose gel electrophoresis: imaging

Imaging:

- DNA stain:
- Ethidium bromide (mutagenic)
- SYBR green (mutagenic?)




Agarose gel electrophoresis: interpreting results

DNA Sample Sample Sample
ladder A B c
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PCR variants



Real-time RT-PCR
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Real-time RT-PCR

How does COVID-19 real-time RT-PCR testing work?

Mix of a person's
genetic material.

1 Sample ?% NSRRI

: \
) i -

A person’s blood, Chemical solutions are added
saliva or mucus is sampled.  to remove substances such as
proteins and fats.

The virus's RNA
(if present).

_—
From RNA to DNA g
In order for PCR to work, the RNA needs to be converted =
into cDNA.
RNA cDNA

3 Copying and dyeing the DNA

o
3% Chemical reagents, including probes
with fluorescent dyes that will mark any
viral cDNA found, are added in order to build
copies of the genetic material.

The samples

machine.

are then placed

in a PCR thermocycler
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Different temperature cycles trigger If the virus is present,
chemical reactions that replicate the copies will generate fluorescence.
the original genetic material. The more fluorescence, the more viral material.
In about one hour,
billions of copies of the original ™\, ucrescent

genetic material are made.
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Digital PCR

Droplet Digital PCR N e erobes. Physical partitioning
(ddPCH:’ action components) for dPCR
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Isothermal PCRs

RCA

Rolling Circle
Amplification

Input materials

8
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Purified Liquid Cultured
plasmid culture colony

Rolling Circle Amplification (RCA)

Random primers

Unidirectional primer (user supplied)
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Isothermal PCRs

WGA

Whole Genome
Amplification

Random hexamer primers (MNMNMN)
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Isothermal PCRs

RPA

Recombinase Polymerase
Amplification
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Isothermal PCRs B
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Molecular Cloning



Not this cloning!!!

Dolly: The Cloning of a Sheep, 1996
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Molecular Cloning
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Restriction Enzymes
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Phosphorylation
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De-phosphorylation

ligase

5'-PO, /
’

DNA insert

ligase /.\ nick
3'-OH Sl-DH
5-OH 5'-PO, /\5'-"04 5'-OH
'-
1]

~Na

phosphatase

ligase




Cloning Steps Summary:

Design and Preparation of Insert and Vector:

« Select the DNA fragment (insert) and an appropriate plasmid vector.

« Add matching restriction sites via PCR if needed.

Restriction Digest:

« Digest both insert and vector with the same or compatible restriction enzymes to create compatible ends.

Phosphorylation and Dephosphorylation (Vector Only):

* Phosphorylate the PCR product if necessary using T4 polynucleotide kinase

« Treat the digested vector with alkaline phosphatase (e.g., CIP or SAP) to remove 5’ phosphate groups.

« This prevents vector self-ligation (re-circularization without insert).

Purification:

« Purify both digested vector and insert DNA using gel extraction or column purification to remove enzymes and
unwanted fragments.

Ligation:

« Mix purified insert and dephosphorylated vector with T4 DNA ligase.

« The insert must have 5' phosphates for ligation to occur.

Transformation:

* Introduce the ligation product into competent E. coli cells via heat shock or electroporation.

Selection:

» Plate transformed cells on antibiotic-containing agar to select for colonies carrying the plasmid.

Screening and Confirmation:

» Pick colonies and verify insert presence by colony PCR, restriction digestion, or sequencing.



Transformation / Transfection
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Gibson Assembly

dsDMNA fragments with overlapping ends.
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DNA Purification



Spin column DNA purification




DNA Synthesis



DNA Synthesis History
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Solid Phase Synthesis
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Limits of Solid Phase Synthesis
- Throughput is limited (~48-96 oligos at a time)

- Oligo Length is limited to 200 — 300 nt (coupling efficiency is
~99.5%)

Theoretical full-length product (%)

Oligo length (bases)



Microarray-based oligo synthesis
(increased throughput)



Microarray-based oligo synthesis

A Column-based oligonucleotide synthesis
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Microarray-based oligo synthesis: inkjet and digital
ohotolithography

D. PGA deprotection E. Photolabile F. Photolabile
C. Electrochemical and digital deprotectionand deprotection and digital
deprotection photolithography mask based photolithography based
B. Ink-jet printing based synthesis based synthesis synthesis synthesis
Printer and
“chemical ink”

Projected light patterns
generated by computer
for microarray synthesis
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Digital Photolithography

Photolithography
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Enzyme Based Oligo Synthesis
(increased cycling efficiency)



TIEOS: template-independent enzymatic oligonucleotide
oligo synthesis

Enzyme: =y
- terminal deoxynucleotidyl transferase
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Gene and Genome Synthesis



B Gene synthesls from DNA microarrays

Gene Synthesis
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Genome Synthesis

A Step 1: Synthesize Building Blocks (BBs) from oligonucleotides

70 nt Building Block
=== ==== PCR =750 bp
Bl

e amees —
20 nt

B Step 2: Assemble 2-4 kb minichunks
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—s R

Transform

Minichunk
2-4 kb

C Step 3: Replace native /ll with minichunks

Yeast transformation 1
[G418R, Leu, Ura™]

1 2 3 4

[G418S, Leu*, Ura7]

Yeast transformation 2
[G418S, Leu*, UraT]

Linker L2

1.2 3 4 5 6 7 8 910 11213 LBl

[G418S, Leu~,Ura*]



Sequencing
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Sanger Sequencing

® Reaction mixture
» Primer and DNA template > DNA polymerase
» ddNTPs with flourochromes > dNTPs (dATP, dCTP, dGTP, and dTTP)

Primer

Template
ddNTPs
dTTP —@
ddCTP —@
ddATP —g
ddGTP —@

@ Primer elongation
and chain termination

Y
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® Capillary gel electrophoresis

[ Capillary gel

_u_

Detector

Chromatograph

separation of DNA fragments

@ Laser detection of flourochromes
and computational sequence analysis



Sanger Sequencing Trace
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Next Generation Sequencing

Genomic DNA

=

Sanger sequencing

DNA denaturation

Apply heat to convert
dsDNA into ssDINA
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Reading of DNA
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Faur reactions are set, each containing:
- template DNA + primer
- DNA polymerase

- free nucleotides

- marked nucleotides

Py

lllumina NGS sequencing

DNA denaturation Library

L1l 1 Genomic DNA s sonicated preparation
into 200-700 bp long
LLLLLLULLL fragments

Adapter ligation

J..LLI.L.LI.LLLLLLLI.I_ Small sequences of DNA
called adapters are ligated

| to the DNA fragments.

a flow cell Adapters bind to.
their complementary oligos,
and DNA fragments attach,

(2 A reverse strand of the DNA
fragment is synthesized, (b) the
dsDNA molecule is denatured,
and (¢ the original DNA template
is washed away.

i@l o)

FR The strands are amplified through
bridge amplification, where (a) the
strand folds over and its free end

binds to the nearest olige; (bl the
complementary DNA strand is
1 synthesized, forming a double-stranded
fa ]

Cluster
flow cell DNAfragmentsareadded o amiplification
1|1
1
| .| 11

bridge: and (¢} the bridge is denatured,
e farming two ssDMA strands,

This process is repeated over and
over, and occurs simultaneously
for millions of clusters, resulting
inclonal amplification of the

original fragments.

After bridge amplification, (a)

the ds molecules are denatured

and (b} all R strands are cleaved

and washed off, (c) leaving only
(@ (L1} [{<]

the F strands,

After each round of amplification,
lasers are passed over the flow cell

to activate the fluorescent label on

the nucleatide bases, This fluorescence
is detected by a camera and recorded
an acomputer, Each of the bases gives.
off adifferent colour
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nature methods

Explore content v  About the journal ¥  Publish with us v

nature > nature methods > news feature » article

News Feature | Published: 12 January 2023

Method of the year: long-read sequencing

Vivien Marx ™

Nature Methods 20, 6-11 (2023) | Cite this article

68k Accesses | 50 Citations | 517 Altmetric | Metrics



Nanopore Sequencing
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Nanopore Sequenc
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DNA can be sequenced by threading it through a microscopic pore in a membrane.
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Nanopore Sequencing

sample port —_

outlet vent port
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waste reservoir
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Future: direct single protein sequencing!



CRISPR
Nobel Chemistry 2020:
Emmanuelle Charpentier
and
Jennifer Doudna



CRISPR: Clustered Regularly Interspaced Short Palindromic
Repeats




ow CRISPR-Cas9 cuts target DNA

REC lobe
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RLTPIPTL

NUC lobe

Cas9 in the apo state
(inactive)

Full complementarity and
HNH allosteric switch to ensure
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Target DNA
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Prepositioned 3 1 )
PAM-interacting sites % 2 'Cas? rapidly
dissociates from
non-PAM DNA
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Genome Editing!
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NEWS | ASIA/PACIFIC

Did CRISPR help—or harm—the first-ever gene-
edited babies?

He Jiankui’s attempt to knock out the CCR5 gene was messy—and so are debates about potential
consequences

1 AUG 2019 - BY JON COHEN

People inherit two copies of CCR5, one from each parent. He chose the gene as a target

because he knew that about 1% of Northern European populations are born with both

copies missing 32 base pairs, resulting in a truncated protein that doesn't reach the cell gEmbryo !
surface. These people, known as CCR5432 homozygotes, appear healthy and are highly (LFE
resistant to HIV infection.

In the embryos He's team edited, the researchers did not attempt to delete these exact 32
base pairs; rather, the group designed CRISPR to cut CCR5 at the base pair at one end of

Embryo «

the natural deletion. The error-prone cell-repair mechanism, which CRISPR depends on to L~

finish knocking out genes, then deleted 15 base pairs in one of Lulu's copies of the gene,

but none in the other. With one normal CCR5, she is expected to have no protection from COND INTERNATIONAL SUMMIT ON
HIV. Nana, according to the data He presented in a slide at an international genome- HUMAN GENOME EDITING
editing summit held in November 2018 in Hong Kong, China, had bases added to one CCR5
copy and deleted from the other, which likely would cripple both genes and provide HIV p— o
resistance.

He added the genes for the CRISPR machinery almost immediately after each embryo was
created through in vitro fertilization, but several researchers who closely studied the slide
caution that it may have done its editing after Nana's embryo was already past the one-cell
stage. That means she could be a genetic "mosaic” who has some unaffected cells with
normal CCR5—and ultimately might have no protection from HIV.
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